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ABSTRACT: Higher education resources are among the scarcest of social resources, and the contradiction between
demand for higher education and the shortage of higher education resources is high at present in China. In order to
calculate the optimal solution of the allocation of higher education resources, the optimisation of manpower resources
of higher education has been modelled using the Pareto genetic algorithm. It reduced the complexity of the model
without designing personal preferences. According to the nature of problems, a hybrid multi-objective genetic algorithm
with a high solving efficiency has been designed. It provides a technical method for the optimisation of the allocation of
higher education resources.

INTRODUCTION

Higher education resources are among the scarcest of social resources, and the contradiction between demand for higher
education and shortage of higher education resources is high in China. To solve the contradiction, other than by
injecting more investment into higher education, it is important to ensure the maximum benefit through the rational
allocation of current resources.

The authors of this article endeavoured to model the optimisation of manpower resources of higher education with the
Pareto genetic algorithm to work out the Pareto optimal solution. They reduced the complexity of the model without
designing personal preferences. According to the nature of problems, the authors designed a hybrid multi-objective
genetic algorithm with a high solving efficiency. They adopted the related Pareto concept and effectively generated the
Pareto solution. This provides a technical method for the optimisation of the allocation of higher education resources.
THE MULTI-OBJECTIVE PROGRAMMING PROBLEM AND PARETO SOLUTION SET

General Model of Multi-Objective Programming for Resources Allocation of Higher Education

In essence, the analysis of resources allocation for higher education can be viewed as a multi-objective programming
problem.

Provided that f(x) = (fi(x), f2(x),...,fa(X)), it refers to the objective function vector of various higher education resources,
g(x) = g1(x), g2(x),..-,0x(x)) refers to the constraint function vector of all kinds of resources; x = (X1,X,...,Xm) refers to all
kinds of resources vectors.

One can convert this problem into the following programming model:

max{Z, = fi(x).Z, = f,(x).-.. Z, = [,(x)}

st.g;(x)<0,i=12,....k
X= (X, X500, Xy ), % 20,1 =1,2,...,m

The feasible region is expressed as:
Z={zeR"z,=f,(x),z, = f,(X),...z, = f,(X),xeS"}
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where S™ refers to the feasible region of decision space, R" refers to the feasible region of objective space.

Scholars at home and abroad proposed a strategy for the solution of multi-objective programming. In order to be easily
understood, here are a few related concepts.

The Pareto Solution Set

In view of the maximisation problem of an objective function, one can define the dominant solution, the non-dominated
solution, the Pareto optimum solution, the Pareto frontier and other concepts.

Definition 1 (dominant solution), if, and only if, there are decision variables X, €S

v, e{l,2,...,n}v, >u;,

making:

. = . u={u,...,u . . . .
Calling that V=qvie Yk dominates | {u ”}, this moment, X is called as the dominant solution of Xy ,

where Vi = f.(x,),i=1..,n and Y = filx,),i=L...n

Definition 2 (non-dominated solution), if, and only if, there are no decision variables X, €3 making:

Vie{l2,...nh v, calling Xy as the non-dominated solution.

Definition 3 (Pareto optimum solution and Pareto frontier), the set of non-dominated solution is called the Pareto
optimum solution, denoted by PS,

P ={f () = (£,0, f,(X),..., f,(X))|x € P}
is called the Pareto frontier.

THE RELATIONSHIP OF SOLUTION SET OF MULTI-OBJECTIVE PROGRAMMING AND SOLUTION
STRATEGY

The Relationship of Solution Set of Multi-objective Programming

Pareto first studied multi-objective optimisation problem in the field of economics and his theory is called the Pareto
optimum theory. The so-called ideal solution produced by solving the single objective optimisation problems is often
outside the feasible region. People are looking for the best solution in the single objective optimisation, while looking
for a set consisting of the Pareto optimum solution [1] and non-dominated solutions [2] in multi-objective programming.
The relationship diagram of multi-objective solution set is shown in Figure 1.
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Figure 1: The relationship diagram of multi-objective solution set.

It can be seen from Figure 1 that each solution in the Pareto optimum solution set is a non-dominated solution of the
multi-objective programming problem. The genetic algorithm can search multiple non-dominated solution through the
population of the whole solution set in parallel way, and policymakers can choose the decision scheme in more than one
of the solutions, which means a very attractive method for solving the multi-objective programming problem. In fact,
what single objective programming solved is the optimum solution, and the same for multi-objective programming is
the satisfactory solution.
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The Solution Strategy of Multi-objective Genetic Algorithm Based on the Rank

Conventional multi-objective optimisation methods solve multi-objective optimisation problems, which usually refer to
synthesising a multi-objective to a single objective for optimisation based on a utility function. However, in most cases,
the defect in this method is: 1) the utility function before optimisation is difficult to determine and often only produces
one solution; 2) a failure to ensure Pareto optimality unless having obtained the optimum value of objective function in
advance; 3) the weight or preferences is not easy to get; 4) the dimensions between multiple objectives do not match
and are not easy to handle; and 5) even through the variable weight method was used, it still fails to find the solution at
the non-convex boundary through integrating the multiple objectives [3].

The main difference between a multi-objective optimisation problem and a single objective optimisation problem is that
the solution of multi-objective optimisation is not the only one, but is an optimal solution set based on the elements,
which are called Pareto solutions or non-dominated solutions.

The multi-objective evolutionary algorithm, based on the evolutionary mechanism, is a global optimisation search
algorithm, which is able to solve complicated multi-objective optimisation problems. Due to adopting the concept of
Pareto optimisation, a multi-objective genetic algorithm can approximate the Pareto frontier through the evolution of
generations of population to overcome the limitations of traditional methods in solving the multi-objective problems.
The multi-objective genetic algorithm has become a very successful application (e.g. production scheduling, sorting,
etc) in many aspects of combinatorial optimisation. Using the Pareto optimum solution can overcome the problem of
optimum solutions obtained by conventional methods, which could not be compared with each other.

Goldberg proposed the fitness function Pareto method based on the rank, the basic idea of which is directly mapping
multiple objective values to the fitness function and, then, on the basis of Pareto optimum set, obtaining the fitness
function form based on the rank; firstly, by forming a vector with the multiple objective function values to represent an
individual, provided that while the individual X; is in the generation t and dominated by Pi(t) individuals, then, their
rank in the generation is: rank (X, t) = 1 + Pi(t).

As shown in Figure 2, the rank of the whole non-dominated individuals are 1, individual 3 is inferior to individual 2,
because the individual 2 is in the compromise area. For the calculation of fitness, it notes that not all rank exist in some
generations. There is no rank 4 in Figure 2, so the method of computing according to the rank must be adjusted. Firstly,
sorting the individuals in the population and, then, calculating the individual fitness according to the linear interpolation
method, the number 1 will be the optimum individual.

Figure 2: The Pareto rank of individuals in the population.

Using the average fitness of individuals with the same rank as the fitness of the combination population to ensure that
the fitness value is a constant will guarantee that the distribution of fitness is uniform. However, a large amount of
calculation is required to solve the rank, especially for larger populations, and the fitness function is a single function,
which is easy to cause the search carried out in a particular direction and the genetic drift.

Looking at the literature, Fonseca and Fleming proposed the multi-objective genetic algorithm with fitness assignment
based on sorting [4]; Horn and Nafpliotis proposed the niche Pareto genetic algorithm [5]; Srinivas and Deb proposed
the genetic algorithm with sorting the non-dominated solutions [6]; Knowles and Corne proposed the archiving
evolution strategy of Pareto solutions [7]; and Zitzler et al proposed the Pareto concentration evolutionary algorithm,
and proposed the improvement of the Pareto concentration evolutionary algorithm [8]. These algorithms overcame the
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problem of larger population size and solved the problem that it is easy to cause the search carried out in a particular
direction and the genetic drift as the fitness function is a single function.

THE ESTABLISHMENT AND ANALYSIS OF OPTIMAL ALLOCATION MODEL FOR HIGHER EDUCATION
RESOURCES

The Combinatorial Optimisation of Production Elements for Higher Education

The optimisation allocation system of higher education resources is a complex, multidimensional and non-linear system.
The optimum combination of production factors is the factors’” combination form, which refers to producing
the required product at the lowest possible cost. To cultivate more students with the least amount of manpower, material
resources and financial resources for higher education:

Provided that Z is the education output and xi(i = 1,2,3,...,n) is the different combinations of education elements, then:
Z = f(X1, X2,...,Xn).

If the combination of education elements is different, the education output is also different, and there must be
an optimal combination among the whole combination, which refers to a minimum input, but a largest output. How to
calculate the optimal combination, as the Western education economy theory said, depends mainly on the production
efficiency of education; namely, the ratio between the education input and output.

P= izj /Zn: X;
j=1 i=1

where P is the ratio between input and output; x; is the different elements combination; Z; is the output.

The larger P is, it means the more reasonable combination of education production factors, while the smaller P is,
it means a more unreasonable combination; hence, the combination with the largest input-output ratio is the optimal
combination. However, an increase in output may result in an increase in education cost. Therefore, the cost issues need
to be considered. In this article, the authors synthetically considered the cost factor, established a multi-objective
optimisation model and found satisfied satisfactory solution with the Pareto genetic algorithm.

The optimisation of higher education resources has no uniform standard, but it has a unified goal. As universities
shoulder three big functions, which refer to teaching, scientific research and social service, three types of indices: mean
number of students per faculty, per capita output of scientific research and per capita income of social service, can be
set, respectively, to reflect the efficiency of human resources in teaching, scientific research and social service.
For material resources, it will be the total fixed assets at the end of the year, which also actually reflect the quality of
students; for financial resources, it will be education expenditure; and for the output of products, it will be the number
of students in school, funds raised for science and technology activities or topic quantity, etc.

Finally, having synthetically considered quantity and quality factors, the following six operability indices were
determined to be used: A; - the proportion of students and teachers (%), Az - the proportion of teachers accounted for all
the staff (%), As - per capita number of teachers’ scientific research projects, As — the average fixed assets of students at
the end of the year (thousand yuan), As — the average education expenditure of student (thousand yuan), and As - the
number of students in school (ten thousand people). There have been some scholars at home and abroad using the above
index values to calculate the composite score of university resources utilisation efficiency. The calculation formula is:

S=C,*A +C, * A, Jr(:3 * A +C,x A, +Cs * Ag +C6 * Ag
The determination and calculation method of indices here refers to Wang [9]. Where Ai s the score of Ai, Ci s the
weight (i = 1,...,6). Due to the subjectivity of the weight, the dimensions between indices are different. So, the authors
performed regularisation processing for some indices, established a model with multi-objective programming theory
and found a satisfied solution with the Pareto genetic algorithm. However, it should be noted that multi-objective
decision-making problems usually have the following characteristics:

e  The contradiction of objectives: objectives have contradictory phenomena in multi-objective decision-making. For
example, if one wants to increase the number of university students, one should increase funds investment, teachers
and equipment, and may even reduce the freshman admission criteria, etc, but these objectives are contradictory.

e  Objectives are non-commensurable: in general, objectives have completely different nature and measurement unit;
for example, the six indices have no nature of commensurability.

e  The decision results are affected by the preferences of decision-makers: decision-makers have different attitudes to

risk or different preferences for some objectives, which will influence the result of the decision, as mentioned
above, and the weights of six indices will be influenced by personal preferences.
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The Establishment of Optimisation Model for Higher Education Resources

; ”;
max &, =3 x, 35,
=1 =1

@)
maxR, = Zyji /szi
i=1 i=1 (2)
max R, = ZJ: D; /Zi: Yii
i=1 i=1 (3)
max R, = ZJ: E; /i Y
i=1 i=1 (4)
max Ry :szi /2 X;i -
max R, = nzj Xii
(©)

nj
Stay, < D X S, Vi

™

nJ
Oy = z Vij < ;. V]
i1

8

gy <D Yy < g, Vi
(9)

6‘641 = Z yij =< 6“42 ) VJ
= (10)

aSl ns Z yij =< a52lvj
= (11)
Xuv’Yuv' Duvv Eu\/l Fuv! Huv ZOV,UV (12)

This model was established aiming at the indices of regional universities: R; - the proportion of students and teachers,
Rz - the proportion of teachers accounted for all the staff, Rs - per capita number of teachers’ scientific research projects
(R&D), R4 - average fixed assets of students at the end of the year, Rs - average education expenditure of students,
Re - number of students in school.

In the model, n; is the number of universities in region j, provided that n; refers to the number of universities
countrywide, then, this model can be used for the resources optimisation of universities countrywide.

nj

ZU ij

i=1 refers to the annual total of the corresponding index in region j. These indices are respectively: total number of
students at school in the year (U refers to X), total number of full-time teachers in the year (U refers to Y), total number of
academic and general staff in the year (U refers to Z), total number of scientific research projects in the year (U refers to D),

total value of fixed assets in the year (U refers to E), total value of education expenditure in the year (U refers to F).

The objective functions are: 1) maximisation of the proportion of students and teachers; 2) maximisation of the
proportion of teachers accounted for all the staff; 3) maximisation of the per capita number of teachers’ scientific
research projects; 4) maximisation of the average fixed assets of students at the end of the year; 5) minimisation of the
total value of education expenditure; and 6) maximisation of the number of students in school.

Constraint (7) - (11) refers to the boundaries that ensure corresponding indices of a school in line with the actual
situation (ai1 and ajp,i = 1,...,5 and are the lower bound and upper bound of resources). Equation (12) refers to a larger
variable value than the zero restriction.

SOLUTION OF THE MODEL

First designing coding methods, fitness assignments, genetic operators, constraint processing, etc, which can be able to

effectively solve the problem must be carried out. The main method of hybrid multi-objective evolutionary algorithm is
as follows. Using the selection and elitism to the initial population randomly generated to identify the good
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chromosomes and obtaining new chromosomes with crossover and mutation operation, each of which corresponds to
a Pareto solution, approaching the Pareto frontier through continuous evolution [10].

Coding

For example, as shown in Figure 3, there is the form of a chromosome, which adopts the decimal coding with a total of six.

[021 [022]016]013]018]01 |

Figure 3: The composition of a chromosome.

Among them, each number is a decimal, which refers to the effect size of corresponding index in the optimal allocation
of resources.

Fitness Function

The essence of optimal allocation for higher education resources is using resources to create maximum efficiency;
therefore, the objective function can be used as fitness function. The quick non-dominated sorting method proposed by
Deb is used to solve the non-dominated solution set [11].

The main idea is to compare every solution of the population with other solutions to get a Pareto solution set, according
to the concept of Pareto solutions. Such a solution set is called the first Pareto frontier, denoted as F1. By lie over the
first Pareto frontier, perform the comparison according to the concept of Pareto solutions continually to get the second
Pareto frontier, and so on, one can obtain the third and fourth Pareto frontier, etc; finally, one can get the Pareto frontier
in the sorting {F1,F>,...}.

Selection Operation

Adopting the competition way to select chromosomes, the method is as follows: one should randomly select two
individuals from the population, denoted as P1 and P,.. Then, compare P; and P, and choose the Pareto frontier
individual in dominant; if P; and P2, and are in the same Pareto frontier, the one less crowed should be chosen.

Crossover and Mutation Operations

Due to the possible violations to model constraint for the new solution, crossover and mutation operations must be
feasible; namely, ensuring that each operation makes each chromosome satisfy the constraints. Using a single-point
crossover to randomly select two chromosomes from current population and one point on the basis of hybrid rate P¢ to
directly cross. A single-point mutation was used to select a mutation point, on the basis of mutation rate Pn, to mutate
for the chromosomes in current population. In order to ensure that mutated chromosomes satisfy constraints,
the variation method of increasing or decreasing offset was used.

Pareto Genetic Algorithm Process of Model

The algorithm process is as follows:

Step 1: Perform the regularisation processing to the objective value of individual.

Step 2: Set the evolution algebra M, population size N, crossover rate P and mutation rate Pn. Generate an initial
population Py witht =1, Py = Py.

Step 3: Calculate the fitness value on the basis of individual Pareto rank and share the operation.

Step 4: Perform a selection, crossover and mutation operation to get a new population.

Step 5: Perform the quick non-dominated sorting method to the new population with a Pr+1 generated.

Step 6: Judge whether the end condition t =t +1 is met, if not, turn to Step 4; otherwise, end with a result output.

ANALYSIS OF SIMULATION RESULTS

Using VC++ programming for the simulation calculation and the processing method is divided into two steps:

First of all, regularisation processing was performed to multiple objectives to combine them into one objective with

a combination method and calculate the optimum combined coefficient with general genetic algorithm, which refers to
recombining R; to make:

S=iqway

This results in the following models:
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max S = ZB:CiV(Ri)

i=1

6
stY'C,=1C, >0,i=123456
M)

7 <R <B.i=123456

Where ZG:C —1 Wwith the same significance of C; ditto, V (R)),i =1,2,3,4,5,6. is the objective function after
i=1
normalisation, y,,R;, £, respectively refer to lower bound and upper bound of each R, .

Calculate the optimum C;, i = 1,2,3,4,5,6, with general genetic algorithm, which results in:
C1=0.143,C,=0.137, C3 = 0.177, C;, = 0.144, C5 = 0.261, Cs = 0.138, with a fitness of 0.90.

Thus, the biggest factor that influences resources allocation efficiency is not the proportion of students and teachers,
but the average education expenditure per student, followed by the per capita number of teachers’ projects, while the
others are basically the same.

According to the original multi-objective programming model, let all the parameter values randomly change in the
possible range, obtain the Pareto solution of index value with Pareto genetic algorithm, when the genetic algebra is
10000, one gets the result:

R, =17.212,R, = 61.587,R, = 0.736,R, = 46.70,R, =12.16, R, = 57.021.

The optimum ratio of students to teachers is 17:1; the optimum proportion of full-time teachers is 61.5%; the optimum
per capita number of teachers’ scientific research projects (R& D) is 0.7; the optimum average fixed assets of students
at the end of the year is 46,700 yuan; the optimum average education expenditure on students is 12,200 yuan; and the
optimum number of students in school (region) is 570,000. Along with the ongoing evolutionary process, the solution
obtained continuously approaches the Pareto frontier. The data have no fundamental changes with genetic algebra
increasing to 50,000. Putting these data into the model generated by combination with a fitness of 0.96 is obtained.
It has no difference with the fitness above.

The authors carried out a comprehensive score to the actual data of various regions in recent years [12-13] with the
above optimal solution. The score formula is:

S :Cl*Al"‘Cz*A2+C3*A3+C4*A4+C5*A5+Ce*As

where the significance of (Ci and Al :1’---16) is the same as above, the difference is that the Ciis no longer

subjectively determined, the calculation method of Aijs statistically grouping the indices according to the range scope
of corresponding index values, sorting them from low to high, respectively, giving the rating score from high to low
with 100, 90, 80, ... and, then, calculating the regions scores with comprehensively scoring formula to obtain the scores
calculated as shown in Table 1.

Table 1: Scoring table of resources allocation for higher education in different regions.

Region Score Region Score Region Score
Beijing 85.1 Anhui 92.2 Chongging 83.2
Tianjin 86.4 Fujian 88.3 Sichuan 85.1
Hebei 89.3 Jiangxi 84.5 Guizhou 80.3
Shanxi 84.1 Shandong 86.2 Yunnan 80.4
Neimenggu 84.2 Henan 86.1 Xizang 78.1
Liaoning 88.6 Hubei 84.8 Shanxi 87.3
Jining 88.6 Hunan 87.8 Gansu 84.6
Heilongjiang | 86.3 Guangdong 89.2 Qinghai 74.5
Shanghai 89.3 Guangxi 84.6 Ningxia 717.2
Jiangsu 90.0 Hainan 81.9 Xinjiang 77.5
Zhejiang 93.3

The resources allocation efficiency of higher education in Shanghai, Jiangu, Zhejiang, Anhui, Fujian, Guangdong and
Hebei is higher, and it is generally lower in the western regions. However, the relatively poor middle developed regions
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are Jilin, Hubei and Chongging. It can be seen that the resources allocation is not singly dependent on the economy’s
development.

The authors found that the efficiency has improved with the increasing resources by changing the resources inputs. Due
to the discreteness of the relationship curve between resources and efficiency, only the point forming the Pareto frontier
has the nature.

CONCLUSIONS

This article presents a new attempt to study the optimal allocation of resources for higher education with a genetic
algorithm. The most important contribution of this article is to realise the Pareto optimisation calculation and analysis of
resources allocation for higher education with the Pareto genetic algorithm.
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